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Abstract
Scaling symmetries of the planar, one-dimensional gas dynamic equations with
adiabatic index γ are used to obtain Lagrangian and Eulerian conservation
laws associated with the symmetries. The known Eulerian symmetry operators
for the scaling symmetries are converted to the Lagrangian form, in which the
Eulerian spatial position of the fluid element is given in terms of the Lagrangian
fluid labels. Conditions for a linear combination of the three scaling symmetries
to be a divergence or variational symmetry of the action are established. The
corresponding Lagrangian and Eulerian form of the conservation laws are
determined by application of Noether’s theorem. A nonlocal conservation law
associated with the scaling symmetries is obtained by applying a nonlocal
symmetry operator to the scaling symmetry-conserved vector. An action
principle incorporating known conservation laws using Lagrangian constraints
is developed. Noether’s theorem for the constrained action principle gives
the same formulas for the conserved vector as the classical Noether theorem,
except that the Lie symmetry vector field now includes the effects of nonlocal
potentials. Noether’s theorem for the constrained action principle is used to
obtain nonlocal conservation laws. The scaling symmetry conservation laws
only apply for special forms of the entropy of the gas.

PACS numbers: 47.10.ab, 47.35.Rs, 02.20.sv, 02.30.Jr

1. Introduction

There is an extensive literature on the Lie symmetries and Hamiltonian structure of the ideal
gas dynamic equations (e.g. Zakharov and Kuznetsov (1984), Salmon (1988), Ibragimov
(1994), Nutku (1987), Olver and Nutku (1988), Morrison (1998), Holm et al (1998), Hydon
(2005), Bridges and Reich (2005), Gibbon et al (2006) and Marsden and Ratiu (1994)) and
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the magnetohydrodynamic (MHD) equations (e.g. Morrison (1982), Holm and Kupershmidt
(1983), Padhye and Morrison (1996a, 1996b), Padhye (1998), Kuznetsov and Ruban (2000),
Fuchs (1991), Grundland and Lalague (1995), Webb et al (2005)). The Lie point symmetry
algebra of the ideal, compressible gas dynamic and MHD equations have been obtained by
Fuchs (1991) and classified by Grundland and Lalague (1995). The symmetries obtained by
Fuchs (1991) pertain to the Eulerian form of the equations (see also Ibragimov (1994)).

Sjöberg and Mahomed (2004) obtained nonlocal symmetries and conservation laws
for the planar, one-dimensional gas dynamic equations from the cover system, consisting
of the original equations, supplemented by known conservation laws and their associated
pseudo-potentials (see also Akhatov et al (1991), Ibragimov et al (1998), Kara and Mahomed
(2000, 2002), Agafonov (1996), Anco and Bluman (2002), Bluman and Cheviakov (2005),
Bluman et al (2006), Bluman (2008), Cheviakov (2008) for related approaches). The use of
Noether’s theorem to derive conservation laws requires that the differential equation system
admits a variational formulation or action principle. Anco and Bluman (2002) developed a
direct method of finding conservation laws of a system of partial differential equations that
applies for equations with no variational principle. Olver and Nutku (1988) obtained higher
order conservation laws and multi-Hamiltonian structures for the planar, one-dimensional gas
dynamic equations for the case of an isentropic polytropic equation of state.

Webb and Zank (2007) investigated the Lie point symmetries, the fluid relabeling
symmetries and the scaling symmetries of the three-dimensional MHD equations. They
converted the Eulerian symmetries to Lagrange label space, in which the Eulerian position
coordinate x is a function of the Lagrange fluid labels x0 and time t (i.e x = x(x0, t)). Each
Eulerian Lie point symmetry of the Galilean group was mapped onto an infinite class of
symmetries in Lagrange label space, associated with the fluid relabeling symmetries (see, e.g.,
Padhye and Morrison, 1996a, 1996b, Padhye 1998). The infinitesimal symmetry generators
V t, V x, V y, V z are the same in both the Eulerian and Lagrangian symmetry operators, where the
symmetry generator V x0 for the fluid relabeling symmetry satisfies an auxiliary set of equations
in Lagrange label space. The conditions for the scaling symmetries to be a divergence or
variational symmetry of the action were derived, and used to obtain conservation laws using
Noether’s theorem. These laws only apply for special initial data for the gas entropy and
magnetic field distribution and have a complicated form.

One aim of this paper is to derive the conservation laws for the scaling symmetries
of planar, one-dimensional gas dynamics for an ideal gas, with adiabatic index γ . This
involves converting the Eulerian symmetries to their Lagrangian form, and by determining the
conditions for a linear combination of the scaling symmetries to be a divergence or variational
symmetry of the action. Noether’s theorem is used to obtain the conservation laws. Using the
methods of Sjöberg and Mahomed (2004), we obtain a nonlocal conservation law by applying
a nonlocal symmetry operator to the scaling symmetry conserved vector. An action principle
incorporating known conservation laws as Lagrangian constraints is developed. Noether’s
theorem for the constrained action principle gives formulas for the conserved density and
current of the same form as the classical Noether theorem, except that the symmetry generators
now include the effects of nonlocal potentials. The variational principle is used to obtain
nonlocal conservation laws. Our analysis shows the importance of the dependence of the
entropy distribution on the Lagrangian mass coordinate for the different symmetries.

2. One-dimensional gas dynamics

The time-dependent, compressible, inviscid equations of Eulerian gas dynamics in one
Cartesian space coordinate x may be written in the form
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∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (2.1)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+

∂p

∂x
= 0, (2.2)

∂p

∂t
+ u

∂p

∂x
+ A(p, ρ)

∂u

∂x
= 0, (2.3)

where u is the fluid velocity, assumed to be directed along the x-axis. If the equation of
state for the gas is written in the form S = f (p, ρ), one finds that A(p, ρ) = c2ρ, where
c2 = ∂p/∂ρ = −fρ/fp is the square of the adiabatic sound speed for the gas. For the case of
a gas with entropy S = Cv ln[(p/p1)/(ρ/ρ1)

γ ] where γ = Cp/Cv is the ratio of the specific
heats at constant pressure and volume, A(p, ρ) = γp. We investigate this case in detail in the
present paper. An alternative formulation uses the internal energy density relation ε = ε(ρ, S)

as the equation of state for the gas, in which case p = ρ∂ε/∂ρ − ε and ρT = ∂ε/∂S define
the pressure and temperature of the gas, and c = (∂p/∂ρ)1/2 is the adiabatic gas sound speed.
For an ideal gas with adiabatic index γ , ε = p/(γ − 1). Equation (2.3) is also equivalent to
the entropy advection equation:

∂S

∂t
+ u

∂S

∂x
= 0. (2.4)

Both (2.3) and (2.4) are equivalent to the co-moving energy equation for the gas.

2.1. Eulerian Lie point symmetries

The Eulerian Lie point symmetries for the 1D gas dynamic equations (2.1)–(2.3) are listed
for example in Ibragimov (1994), vol 1, chapter 13, section 13.1.12 (see also Ovsjannikov
(1962)). For arbitrary A(p, ρ), the Lie point symmmetry algebra is spanned by the vector
fields:

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = t

∂

∂t
+ x

∂

∂x
, X4 = t

∂

∂x
+

∂

∂u
. (2.5)

The vector fields X1 and X2 correspond to the time and space translation symmetries, X3

corresponds to a scaling symmetry and X4 to the Galilean boost symmetry. The scaling
symmetry X3 corresponds to the symmetry operator X11 + X12 of Webb and Zank (2007) for
three-dimensional MHD.

Depending on the equation of state as specified by A(p, ρ), the equations may admit
further symmetries. In particular for an ideal, constant adiabatic index γ , gas:

A(p, ρ) = γp, ε = p

γ − 1
, S = Cv ln

[(
p

p1

) (
ρ

ρ1

)γ ]
, (2.6)

equations (2.1)–(2.3) admit two further scaling symmetries, listed below:

X5 = t
∂

∂t
− u

∂

∂u
+ 2ρ

∂

∂ρ
, X6 = p

∂

∂p
+ ρ

∂

∂ρ
. (2.7)

The Lagrangian map is discussed in more detail in section 2.2.

2.2. The Lagrangian map

In Lagrangian fluid dynamics, the Eulerian fluid particle position x is regarded as a solution
of the differential equation system

dx
dt

= u(x, t), (2.8)
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where the fluid velocity u(x, t) is regarded as a given function of x and t (cf Courant and
Friedrichs (1976) and Broer and Kobussen (1974)). The solution of the dynamical system
(2.8) for x = x0 at time t = 0 (the coordinates (x0, y0, z0) are known as Lagrangian fluid
labels) has the form: x = X(x0, t). If x = X(x0, t) is 1–1 and invertible, then x0 = X0(x, t),
where X0 describes the inverse function. The fluid velocity is given by u = ∂X(x0, t)/∂t .

For one-dimensional gas dynamics in one Cartesian space coordinate x:

dx = ∂x

∂x0
dx0 +

∂x

∂t
dt = ∂x

∂x0

(
∂x0

∂x
dx +

∂x0

∂t
dt

)
+

∂x

∂t
dt. (2.9)

Equating the coefficients of dx and dt in (2.9) gives the equations

∂x

∂x0

∂x0

∂x
= 1,

∂x

∂t
+

∂x

∂x0

∂x0

∂t
= 0. (2.10)

From equations (2.10), it follows that

∂x0

∂t
+ u

∂x0

∂x
= 0, (2.11)

showing that the Lagrangian label x0 is advected with the flow.
The mass continuity equation (2.1) can be written in the form

ρ(x, t) dx = ρ0 dx0 or ρJ = ρ0, (2.12)

where ρ0 = ρ(x0, 0) and J = ∂x/∂x0 is the Jacobian of the Lagrange map between the
Eulerian position of the fluid element and its Lagrangian label x0. The Lagrangian mass
coordinate h given by

h =
∫ x

−∞
ρ(x ′, t) dx ′ =

∫ x0

−∞
ρ(x ′

0, 0) dx ′
0 (2.13)

may be used instead of x0 as a Lagrangian fluid label. Both h = h(x0) and the entropy S(x0)

are advected with the flow. Differentiating (2.13) with respect to h, keeping t constant, we find

τ = 1/ρ = xh and ρ = 1/xh, (2.14)

for the specific volume τ and density ρ in terms of x (h, t).

Proposition 2.1. Consider the action principle:

A =
∫ ∫

L dx dt ≡
∫ ∫

L0 dh dt, (2.15)

where the Lagrangian densities L and L0 are given by

L = 1
2ρx2

t − ε(ρ, S), L0 = xhL ≡ 1
2x2

t − F(xh, h), F (xh, h) = ε

ρ
. (2.16)

The condition that the action is stationary: δA/δx = 0 gives the Lagrangian x-momentum
equation for 1D ideal gas dynamics in the form

δA

δx
= ∂L0

∂x
− ∂

∂t

(
∂L0

∂xt

)
− ∂

∂h

(
∂L0

∂xh

)
≡ − (xtt + ph) = 0, (2.17)

where

p = ρερ − ε = −∂F (xh, h)

∂xh

(2.18)

is the gas pressure (see Broer and Kobussen (1974) and Courant and Friedrichs (1976) for
further details). The Eulerian momentum equation follows by multiplying (2.17) by ρ = 1/xh

and noting that xtt = du/dt = ut + uux and ρph = px .
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Comment 1
For the adiabatic equation of state (2.6), the Lagrangian momentum equation (2.17) may

be written in the form of a nonlinear wave equation for x (h, t) of the form

xtt = N1x
−γ−1
h exp[S̄(h)][γ xhh − xhS̄h], (2.19)

where

p = N1x
−γ

h exp(S̄), N1 = p1ρ
−γ

1 , S̄ = S

Cv

. (2.20)

Comment 2
Introduce a potential w for x (h, t) and then

L0 = 1

2
w2

ht − F(whh, h) where x = wh. (2.21)

The condition for the action to be stationary reduces to

δA

δw
= ∂2

∂h2
(wtt + p) = 0 so that (wtt + p) = 0, (2.22)

for an appropriate choice of gauge. For a gas with adiabatic index γ , (2.22) reduces to

wtt + N1w
−γ

hh exp[S̄(h)] = 0. (2.23)

For γ = −1 and S̄ = const. (2.23) is essentially Laplace’s equation. This result is related to
nonlocal symmetries of the 1D planar gas dynamic equations for the case γ = −1 obtained
by Akhatov et al (1991). We use w in section 6 in the constrained variational principle for the
cover system (5.17) of Sjöberg and Mahomed (2004).

3. Lagrangian scaling symmetries

In this section, we transform the general scaling symmetry

X(s) = α3X3 + α5X5 + α6X6 (3.1)

to its Lagrangian form. This results in constraints on the entropy distribution S = S(h), which
are used in section 4 to determine when the symmetries (3.1) are divergence symmetries of
the action.

3.1. The Lagrangian form of the symmetry operator X(s)

From (2.5) to (2.7) the Eulerian form of the symmetry operator (3.1) for the scaling symmetries
may be written in the form

X(s) = V t ∂

∂t
+ V x ∂

∂x
+ V u ∂

∂u
+ V ρ ∂

∂ρ
+ V p ∂

∂p
, (3.2)

where
V t = (α3 + α5)t, V x = α3x, V u = −α5u,

V ρ = (2α5 + α6)ρ, V p = α6p.
(3.3)

Proposition 3.1.
The extended Lie symmetry operator (3.2) in Lagrangian coordinates (t, h, x) has the

form

X̃(s) = V t ∂

∂t
+ V h ∂

∂h
+ V x ∂

∂x
+ V xt

∂

∂xt

+ V xh
∂

∂xh

+ V xtt
∂

∂xtt

+ V xht
∂

∂xht

+ V xhh
∂

∂xhh

+ · · · . (3.4)
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The detailed solutions for the coefficients in (3.4) depend on the value of the parameters

δ1 = −[γα5 + (γ − 1)α6/2], δ2 = α3 + 2α5 + α6, δ3 = −(2α5 + α6). (3.5)

There are four cases to consider, depending on whether δ1 and/or δ2 are zero or non-zero,
which are listed below.

Case (i) δ1 �= 0, δ2 �= 0.

In this case the symmetry generators have the form

V t = (α3 + α5)t, V x = α3x, V h = δ2(h + d1),

V xt = −α5xt , V xh = δ3xh, V xtt = −(α3 + 2α5)xtt ,

V xhh = (δ3 − δ2)xhh, V xht = (δ3 − α3 − α5)xht .

(3.6)

The entropy S = S(h) is constrained to have the form

S = Cv (−2ν ln |h + d1| + d2) , ν = −δ1

δ2
, (3.7)

where and d1 and d2 are arbitrary constants.
Case (ii) δ1 = 0, δ2 �= 0.

The symmetry generators are the same as in (3.6) except that δ1 = 0 restricts the values
of α3, α5 and α6. The entropy S = S1 = const. corresponds to isentropic gas dynamics.
Case (iii) δ1 �= 0, δ2 = 0.

The symmetry generators have the same form as (3.6) except that V h = k1 = const. For
k1 �= 0 the entropy S is constrained to have the form

S = 2Cv

δ1h

k1
+ k2. (3.8)

Case (iv) δ1 = 0, δ2 = 0.

The symmetry generators are given by (3.6) except that V h = k1 = const. For k1 = 0,
(i.e. V h = 0), there is no constraint on S(h). The case k1 �= 0 is the isentropic case for which
S = const.

Proof. The proof uses the Lie extension formulas for the transformation of derivatives, where
x = x(h, t) gives the Eulerian position of the fluid element terms of the Lagrangian mass
coordinate h and time t. For the Lie infinitesimal transformations:

t ′ = t + εV t , h′ = h + εV h, x ′ = x + εV x, (3.9)

derivative xi transforms as

x ′
i ′ = xi + εV xi , V xi = Di(V

x) − Di(V
j )xj , (3.10)

where we use the notation (x1, x2) = (t, h). Similarly,

x ′
i ′j ′ = xij + εV xij , V xij = Dj(V

xi) − Dj(V
k)xki . (3.11)

These formulas, coupled with the known Eulerian form of the scaling symmetries in (3.3) may
be used to derive (3.6)–(3.8). �

Comment
For the case δ1 �= 0 and δ2 �= 0, with the equation of state

p = N1x
−γ

h (h + d1)
−2ν, N1 = p1ρ

−γ

1 , ν = −δ1

δ2
, (3.12)

the Lagrangian wave equation (2.19) has the form

G ≡ xtt − N1x
−γ−1
h (h + d1)

−2ν

(
γ xhh +

2νxh

h + d1

)
= 0. (3.13)

6
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4. Conservation laws in one-dimensional gas dynamics

We show that the general scaling symmetry X(s) in (3.1) is a variational or divergence symmetry
of the action (2.15), if

α5 + α6 + 2α3 = 0. (4.1)

Noether’s theorem gives the corresponding conservation law.
By integrating the group trajectories:

dt

V t
= dx

V x
= du

V u
= dρ

V ρ
= dp

V p
= dε, (4.2)

we obtain the finite equations of the group in the form

x ′ = x exp(α3ε), t ′ = t exp[ε(α3 + α5)], u′ = u exp(−α5ε),

ρ ′ = ρ exp[(2α5 + α6)ε], p′ = p exp(α6ε).
(4.3)

The finite transformations (4.3) leave the gas dynamic equations (2.1)–(2.3) invariant for the
case A(p, ρ) = γp. In fact

∂ρ ′

∂t ′
+

∂

∂x ′ (ρ
′u′) = exp[ε(α5 + α6 − α3)]

(
∂ρ

∂t
+

∂

∂x
(ρu)

)
,

ρ ′ du′

dt ′
+

∂p′

∂x ′ = exp[ε(α6 − α3)]

(
ρ

du

dt
+

∂p

∂x

)
,

dp′

dt ′
+ γp′ ∂u′

∂x ′ = exp[ε(α6 − α3 − α5)]

(
dp

dt
+ γp

∂u

∂x

)
,

(4.4)

where d/dt = ∂t + u∂x is the Lagrangian time derivative. Thus, the transformed equations are
satisfied, if the original equations (2.1)–(2.3) are satisfied.

The dimensions of the action (2.15) transform as

[A′] = [p′x ′t ′] = exp{(α5 + α6 + 2α3)ε}[pxt], (4.5)

which implies that for the action to be invariant under scaling transformations (4.3) requires
α5 + α6 + 2α3 = 0. Thus, condition (4.1) follows from dimensional analysis of the action. A
more formal derivation of (4.1) follows from Noether’s theorem (see below).

4.1. Noether’s theorem

A version of Noether’s first theorem, sufficiently general for our purposes, is given below.
Noether’s first theorem
If the action

A =
∫ ∫

L0(t, h, x, xt , xh) dh dt (4.6)

is invariant under the infinitesimal Lie transformation:

t ′ = t + εV t , h′ = h + εV h, x ′ = x + εV x, (4.7)

and the divergence transformations:

L′
0 = L0 + ε(Dt�

t + Dh�
h), (4.8)

to O(ε2), then the differential equation

Ex(L0) = δA

δx
= ∂L0

∂x
− ∂

∂t

(
∂L0

∂xt

)
− ∂

∂h

(
∂L0

∂xh

)
= 0 (4.9)

7
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admits the conservation law

Dt(I0) + Dh(I1) = 0, (4.10)

where

I0 = Wt + L0V
t + �t, I1 = Wh + L0V

h + �h (4.11)

are the conserved density I0 and flux I1, and

V̂ x = V x − (V tDt + V hDh)x (4.12)

is the canonical Lie symmetry generator (i.e. the Lie transformation x ′ = x + εV̂ x, t ′ = t and
h′ = h that is equivalent to (4.7)). The quantities

Wt = V̂ x ∂L0

∂xt

, Wh = V̂ x ∂L0

∂xh

, (4.13)

are the surface vector terms that arise under the canonical Lie transformation, for which the
variation of A is given by

δA =
∫ ∫

(V̂ xEx(L0) + DtW
t + DhW

h) dh dt. (4.14)

The condition that the Lie transformations (4.7) and the divergence transformation (4.8)
leave the action (4.6) invariant to O(ε) is

X̃L0 + L0[DtV
t + DhV

h] + Dt�
t + Dh�

h = 0, (4.15)

where X̃ is the extended Lie symmetry operator corresponding to the symmetries (4.7). If
condition (4.15) is satisfied, then (4.9) admits the conservation law (4.10) (see, e.g., Ibragimov
(1985), Bluman and Kumei (1989) and Olver (1993) for details).

4.2. Conservation laws

Proposition 4.1. For the gas dynamic action principle (2.15) for a gas with the equation of
state (2.6):

X̃L0 + (DtV
t + DhV

h)L0 = (α5 + α6 + 2α3)L0. (4.16)

Thus if

α5 + α6 + 2α3 = 0, (4.17)

the symmetry operator X is a variational symmetry of the action (2.15), in which case the
1D gas dynamic system admits the conservation law (4.10), where the conserved vector
T = (I0, I1) is given by

I0 = V̂ xu + V tL0, I1 = V̂ xp + V hL0. (4.18)

The detailed form of T depends on whether δ1 and δ2 are zero or non-zero.

Proof. The proof follows immediately from the identities

X̃L0 = −2α5L0, [DtV
t + DhV

h]L0 = (2α3 + 3α5 + α6)L0. (4.19)

The detailed form of V̂ x , V t, V h for the different cases for δ1 and δ2 in proposition (4.1),
in order that a conservation law of the form (4.10) is obtained are listed below. �

Case (i) δ1 �= 0, δ2 �= 0.

8
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Taking into account (4.16) for a conservation law to apply, we obtain

V̂ x = α3x − (α3 + α5)txt − (α5 − α3)(h + d1)xh,

V t = (α3 + α5)t, V h = (α5 − α3)(h + d1).
(4.20)

The Lagrangian density L0 and gas pressure p are given by

L0 = 1

2
u2 − p

(γ − 1)ρ
≡ 1

2
x2

t − N1x
1−γ

h

γ − 1
(h + d1)

−2ν,

p = N1x
−γ

h (h + d1)
−2ν, ν = −δ1

δ2
.

(4.21)

Note that ν depends on the ratio α3/α5. The conserved density I0 and flux I1 are

I0 = {α3x − (α3 + α5)txt − (α5 − α3)(h + d1)xh]} xt + (α3 + α5)tL0,

I1 = {α3x − (α3 + α5)txt − (α5 − α3)(h + d1)xh]} p + (α5 − α3)(h + d1)L0.
(4.22)

Case (ii) δ1 = 0, δ2 �= 0.

In this case the conditions δ1 = 0 and α5 + α6 + 2α3 = 0 imply

(α3, α5, α6) = α6

(
−γ + 1

4γ
,− (γ − 1)

2γ
, 1

)
,

V̂ x = α

[
γ + 1

3γ − 1
x −

(
txt +

γ − 3

3γ − 1
(h + d1)xh

)]
,

V t = αt, V h = α(γ − 3)

3γ − 1
(h + d1), α = α3 + α5,

L0 = 1

2
x2

t − N1x
1−γ

h exp(S̄1)

γ − 1
, p = N1x

−γ

h exp(S̄1),

(4.23)

in the conservation law (4.10). The gas is isentropic gas with S̄ = S̄1 = const., δ2 �= 0 and
γ �= 3. I0 and I1 (with α = 1) are

I0 =
[

γ + 1

3γ − 1
x −

(
txt +

γ − 3

3γ − 1
(h + d1)xh

)]
xt + tL0,

I1 =
[

γ + 1

3γ − 1
x −

(
txt +

γ − 3

3γ − 1
(h + d1)xh

)]
p +

(γ − 3)

3γ − 1
(h + d1)L0.

(4.24)

Case (iii) δ1 �= 0, δ2 = 0.

(α3, α5, α6) = α

(
1

2
,

1

2
,−3

2

)
,

V̂ x = α

(
1

2
x − txt

)
− k1xh, V t = αt, V h = k1 �= 0,

L0 = 1

2
x2

t − N1x
1−γ

h

γ − 1
exp

(
α(γ − 3)h

2k1

)
, p = N1x

−γ

h exp

(
α(γ − 3)h

2k1

)
,

I0 =
[
α

(
1

2
x − txt

)
− k1xh

]
xt + αtL0,

I1 =
[
α

(
1

2
x − txt

)
− k1xh

]
p + k1L0.

(4.25)

9
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Case (iv) δ1 = 0, δ2 = 0.

γ = 3, (α3, α5, α6) = α

(
1

2
,

1

2
,−3

2

)
,

V̂ x = α

(
1

2
x − txt

)
, V t = αt, V h = 0,

L0 = 1

2
x2

t − N1x
−2
h

2
exp(S̄(h)), p = N1x

−3
h exp(S̄(h)),

I0 = α

[(
1

2
x − txt

)
xt + tL0

]
, I1 = α

(
1

2
x − txt

)
p.

(4.26)

Proposition 4.2. The Lagrangian conservation law (4.10) can be written in the Eulerian
form:

∂F0

∂t
+

∂F1

∂x
= 0, (4.27)

where the conserved vector (F0, F1) is given by

F0 = ρI0, F1 = ρuI0 + I1. (4.28)

Proof. Use the Eulerian mass continuity equation (2.1) and use ρ = ∂h/∂x = 1/xh. �

Example. For case (i) with δ1 �= 0, δ2 �= 0, the conserved vector (F0, F1) is given by

F0 = ρu

[
α3x − (α3 + α5)tu +

α5 − α3

ρ
exp

(
− S̄

2ν

)]
+ (α3 + α5)tL,

F1 = (p + ρu2)

[
α3x − (α3 + α5)tu +

(α5 − α3)

ρ
exp

(
− S̄

2ν

)]

+L
[
(α3 + α5)tu +

(α5 − α3)

ρ
exp

(
− S̄

2ν

)]
, (4.29)

where L = ρL0 is the Eulerian Lagrangian density of the fluid.

5. Nonlocal symmetries and conservation laws

In this section, we use the scaling symmetry conservation law (4.22) to derive a nonlocal
conservation law based on the work of Sjöberg and Mahomed (2004) and Kara and Mahomed
(2002).

Kara and Mahomed (2002) and Sjöberg and Mahomed (2004) studied the effects of Lie
symmetry operators, X, of a partial differential equation system:

Fβ(x, u, u(1), u(2), . . . , u(m)) = 0, 1 � β � p, (5.1)

on a family of conserved vectors {Tγ } for the differential equation system, satisfying the
conservation laws

∇·Tγ = DiT
i
γ = 0, 1 � γ � r. (5.2)

Here we use the Einstein summation convention and i labels the independent variables xi,
(1 � i � n), Di is the total partial differential operator with respect to xi and γ labels the
family of conservation laws. They showed that (5.1) also has conserved vectors T∗

γ defined
by the formula

T ∗i
γ = X̃

(
T i

γ

)
+ T i

γ Djξ
j − T jDjξ

i, (5.3)

10
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where X̃ is the extended Lie symmetry operator corresponding to X and the {ξ i : 1 � i � n}
are the infinitesimal generators for changes of the xi (i.e. x

′i = xi + εξ i , u
′α = uα + εV uα

are the infinitesimal Lie transformations). The result (5.3) is derived in appendix , using the
algebra of exterior differential forms.

For the case of two independent variables (x1, x2) (i.e. n = 2), one can introduce
potentials ũγ associated with each conservation law, such that

T 1
γ = D2ũ

γ , T 2
γ = −D1ũ

γ . (5.4)

Then the conservation law is a consequence of the equality of mixed partial derivatives of the
ũγ . It turns out that the symmetry operator X associated with the conservation law DiT

∗i
γ = 0

has a Lie extension operator of the form

X̃ = X + u∗γ ∂

∂ũγ
, (5.5)

where u∗γ is the potential corresponding to T ∗
γ , i.e.

T∗
γ = (D2u

∗γ ,−D1u
∗γ ). (5.6)

Further details of this theory can be found in the above papers.
The main point here is that known conserved vectors Tγ coupled with a Lie symmetry

operator X of (5.1) can be used to generate other conservation laws of (5.1) via the
transformation (5.3). The result (5.3) is well known for canonical Lie symmetry operators
X̂ = X̃ − ξ iDi (e.g. Ibragimov (1985)) which correspond to Lie transformations of the form:

x
′i = xi, u

′α = uα + εV̂ uα

, V̂ uα = V uα − ξ iuα
i . (5.7)

The canonical transformations (5.7) are equivalent to the transformations x
′i = xi + εξ i ,

u
′α = uα + εV uα

. The extended Lie canonical symmetry operators corresponding to (5.7)
commute with the Di (i.e. [X̂,Di] = 0). It then follows that if T i is a conserved vector, then
T ∗i = X̂T i is also a conserved vector (note X̂(DiT

i) = Di(X̂T i) = DiT
∗i).

Sjöberg and Mahomed (2004) applied these ideas to the conservation laws of one-
dimensional planar gas dynamics, using three standard forms of the equations: (a) the Eulerian
form (2.1)–(2.3), (b) an intermediate form in which x and t are the independent variables, and
the Lagrangian mass coordinate h, fluid velocity u and gas pressure p are the dependent
variables, and (c) the Lagrangian form of the equations in which h and t are the independent
variables, and q = 1/ρ, u and p are the dependent variables (see also Akhatov et al (1991)).

The Lagrangian form of the equations can be written in the form:

qt − uh = 0, (5.8)

ut + ph = 0, (5.9)

pt +
γp

q
uh = 0, (5.10)

where

q = xh = 1

ρ
. (5.11)

Equation (5.10) is equivalent to the entropy advection equation for the case of a gas with
adiabatic index γ and with the equation of state

p = p0(q/q0)
−γ exp[S̄(h)], (5.12)

11
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where S̄ = S/Cv is a normalized version of the gas entropy. For the scaling symmetry
conservation law (4.22), the equation of state from (4.21) has the form

p = N1q
−γ h−2ν, ν = [(γ + 1)/2]α5 − (γ − 1)α3

α5 − α3
, (5.13)

where we have made the replacement h + d1 → h in the formulas of section 4. The
dependence of the parameter ν on α3 and α5 in (5.13) is a consequence of the requirement that
α5 + α6 + 2α3 = 0 for the scaling symmetries to give a conservation law.

Sjöberg and Mahomed (2004) consider the basic gas dynamic equations (5.8)–(5.10)
supplemented by known conservation laws, of the form

∇·Tγ ≡ ∂T 1
γ

∂t
+

∂T 2
γ

∂h
= 0, Tγ = (

ũ
γ

h ,−ũ
γ
t

)
, (5.14)

with similar conservation laws for the Eulerian and intermediate systems. The total system
of equations consisting of the original equations (5.8)–(5.10) and a class of conservation laws
is known as the cover system. The conservation laws for the system can be written in the
potential form:

ũ
γ

h − T 1
γ = 0, ũ

γ
t + T 2

γ = 0, (5.15)

where the ũγ are the potentials (pseudo-potentials) associated with the conservation laws, and
T 1

γ and T 2
γ are the conserved density and flux, respectively.

For the mass, energy, momentum and center of mass conservation laws, the conserved
vectors Tγ are

T1 = (q,−u), T2 =
(

1

2
u2 +

pq

γ − 1
, pu

)
,

T3 = (u, p), T4 = (
tu − ũ1, tp

)
,

(5.16)

respectively (note ũ1 ≡ x(h, t)). In this case, the cover system consists of the equations

qt − uh = 0, ut + ph = 0, pt +
γp

q
uh = 0,

ũ1
h − q = 0, ũ1

t − u = 0,

ũ2
h −

(
1

2
u2 +

pq

γ − 1

)
= 0, ũ2

t + pu = 0,

ũ3
h − u = 0, ũ3

t + p = 0,

ũ4
h − (tu − ũ1) = 0, ũ4

t + tp = 0.

(5.17)

It turns out that the Lie point symmetries of the cover system (5.17) is a larger class
than that of the original system (5.8)–(5.10). The symmetries consist of the usual Lie point
symmetries {Xi : 1 � i � 6} listed in (2.5)–(2.7) consisting of the Galilean symmetries
{X1, X2, X4} and the scaling symmetries {X3, X5, X6} but converted to their Lagrangian
form, plus the fluid relabeling symmetry X7 = ∂/∂h (Sjöberg and Mahomed use a different
labeling system than that used in the present paper). The detailed form of these symmetry
operators for the Lagrangian cover system (5.17), including their action on the potentials ũγ ,
(1 � γ � 4) are listed in Sjöberg and Mahomed (2004). However, Sjöberg and Mahomed
also give a further symmetry operator

X̃11 = −h2 ∂

∂h
− hp

∂

∂p
+ (hu − ũ3)

∂

∂u
+ 3hq

∂

∂q
+ (ũ4 − ũ3t + ũ1h)

∂

∂ũ1

− 1

2
(ũ3)2 ∂

∂ũ2
− ũ3h

∂

∂ũ3
− ũ4h

∂

∂ũ4
, (5.18)

12
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which is a Lie point symmetry of the cover system (5.17), but is a nonlocal symmetry of the
original system (5.8)–(5.10). A list of the extended symmetry operators {X̃i : i = 1(1)7, 11}
used in the present paper and their commutators is given in appendix .

We now ask if the nonlocal symmetry (5.18) is compatible with the equation of state
(5.13) for p = p(q, h) obtained for the scaling symmetry conservation laws? To this end, we
note from (5.13) that the Lie transformations p′ = p + εV p, h′ = h + εV h and q ′ = q + εV q

compatible with (5.13) satisfy the equation

V p = p

(
−γ

q
V q − 2ν

h
V h

)
. (5.19)

Using V q = 3hq and V h = −h2 from (5.18) in (5.19) gives

V p = ph(2ν − 3γ ) = −ph if 2ν = 3γ − 1. (5.20)

Using the expression (5.13) for ν in (5.20) we find that the symmetry X11 in (5.18) is compatible
with the scaling symmetry equation of state (5.13) if

α5 = (γ + 1)α3

2(γ − 1)
and 2ν = 3γ − 1. (5.21)

With the choice of parameters (5.21), the scaling symmetry equation of state is compatible with
the symmetry X11. It is apparent from (5.12) that the entropy S̄(h) = −(3γ − 1) ln(h) + const.
in order that X11 is a symmetry in the general case.

Proposition 5.1. The one-dimensional planar gas dynamic equations (5.8)–(5.11) for an
equation of state

p = N1q
−γ h−(3γ−1), (5.22)

possesses a nonlocal conservation law of the form (5.14) with conserved density T ∗1 and flux
T ∗2 given by

T ∗1 = α3uũ4 + ũ3[−α3ũ
1 + (α5 − α3)hq + α5tu] − (α5 − α3)h

2qu,

T ∗2 = α3pũ4 + ũ3 [α5tp − (α5 − α3)hu] + (α5 − α3)h
2

(
1

2
u2 − γpq

γ − 1

)
,

(5.23)

where α5 = (γ + 1)α3/[2(γ − 1)] as in (5.21), and the nonlocal potentials ũ1, ũ3 and ũ4

satisfy the cover system (5.17).

Proof. The components of the scaling symmetry conserved vector Ts = (I0, I1) in (4.22) may
be expressed in the form

I0 = α3xu − (α5 − α3)hqu − (α3 + α5)t

[
1

2
u2 +

pq

γ − 1

]
,

I1 = α3xp − (α3 + α5)put + (α5 − α3)h

[
1

2
u2 − γpq

γ − 1

]
.

(5.24)

Using the nonlocal symmetry operator X̃11 from (5.18) and the scaling symmetry conserved
vector Ts = (I0, I1) from (5.24) in (5.3) gives formulas (5.23) for (T ∗1, T ∗2). The parameters
α3 and α5 must be chosen to satisfy (5.21) for X11 to be a symmetry of the cover system (5.17)
with equation of state (5.22) for the gas. One can verify the conservation law (5.23) by straight
forward differentiation to obtain the equation

∂T ∗1

∂t
+

∂T ∗2

∂h
= (α5 − α3)pqh

γ − 1
[2ν − (3γ − 1)]. (5.25)

For the parameter constraints (5.21), 2ν = (3γ − 1), (5.25) is a conservation law. This
completes the proof. �

13



J. Phys. A: Math. Theor. 42 (2009) 475205 G M Webb and G P Zank

6. A constrained variational principle

In this section, we obtain a constrained variational principle to describe the cover system (5.17)
used by Sjöberg and Mahomed (2004) to investigate nonlocal symmetries of the planar, one-
dimensional Lagrangian gas dynamic equations. There is a connection between the potentials
ũ1, ũ3 and ũ4 in the cover system (5.17) and the potential w introduced in (2.21) et seq.,
namely

ũ1 = wh, ũ3 = wt, ũ4 = twt − w. (6.1)

Formulas (6.1) for ũ1, ũ3 and ũ4 satisfy the cover system (5.17). However, it is not possible
to express the potential ũ2 in terms of w. This suggests that (5.17) can be represented by a
constrained variational principle.

Theorem 6.1. Consider the constrained action principle

A =
∫ ∫

L′ dh dt, (6.2)

where the constrained Lagrangian L′ has the form

L′ = L0 −
(

4∑
i=1

λiEi + μiFi

)
. (6.3)

Here, L0 is the Lagrangian density in (2.16) for an ideal gas with adiabatic index γ , namely

L0 = 1

2
u2 − pq

γ − 1
, (6.4)

and the Ei and Fi are given by

E1 = ũ1
h − q, F1 = ũ1

t − u,

E2 = ũ2
h −

(
1

2
u2 +

pq

γ − 1

)
, F2 = ũ2

t + pu,

E3 = ũ3
h − u, F3 = ũ3

t + p,

E4 = ũ4
h + ũ1 − tu, F4 = ũ4

t + pt.

(6.5)

The constraint equations Ei = 0 and Fi = 0 correspond to the potential form of the mass,
energy, momentum and center of mass conservation laws in the cover system (5.17). The gas
pressure p is given by the equation of state:

p = N1q
−γ exp[S̄(h)] (6.6)

(S̄ = S/Cv is a dimensionless form of the gas entropy). The constrained variational principle
(6.2)–(6.6) is equivalent to the Sjöberg and Mahomed (2004) cover system (5.17) provided
that the Lagrange multipliers {μj , λj } (1 � j � 4) have the form

μ1 = −u + Dh(p�2) − �4, λ1 = −p − Dt(p�2),

μ2 = Dh(�2), λ2 = −Dt(�2),

μ3 = −Dh(t�4 + u�2), λ3 = Dt(t�4 + u�2),

μ4 = Dh(�4), λ4 = −Dt(�4).

(6.7)

In (6.7), the functions �2 and �4 are either (a) differentiable functions of h and t or (b)
functions of known potentials {ũj } associated with conserved vectors Tj = (

ũ
j

h,−ũ
j
t

)
.

Proof. The stationary point conditions δA/δμj = 0 and δA/δλj = 0 (1 � j � 4) requires
that the ũj satisfy the potential equations (5.17), (i.e. Ei = 0, Fi = 0, 1 � i � 4). The
stationary point conditions δA/δu = 0 and δA/δq = 0 require

14
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δA
δu

≡ u + μ1 + λ2u − μ2p + λ3 + tλ4 = 0, (6.8)

δA
δq

≡ p + λ1 − λ2p +
γpu

q
μ2 +

γp

q
μ3 +

γpt

q
μ4 = 0. (6.9)

The stationary point conditions δA/δũj = 0 (1 � j � 4) reduce to

δA
δũ1

≡ Dtμ1 + Dhλ1 − λ4 = 0, (6.10)

δA
δũj

≡ Dtμj + Dhλj = 0, j = 2, 3, 4. (6.11)

To derive (6.7) we first note from (6.11) that the Lagrange multipliers {μj , λj } (j = 2, 3, 4)
are conserved vectors, and hence can be written in terms of potentials �j in the form

(μj , λj ) = (Dh�j ,−Dt�j ), j = 2, 3, 4. (6.12)

Taking into account the form of (μ4, λ4) in (6.12), it follows that

(μ1 + �4, λ1) = (Dh�1,−Dt�1),

μ1 = Dh�1 − �4, λ1 = −Dt�1.
(6.13)

Using (6.12)–(6.13) for {μj , λj }, (6.8) reduces to the conservation law:

Dt(ũ
1 − t�4 − �3 − u�2) + Dh(�1 − p�2) = 0, (6.14)

(note that u = ũ1
t and ũ1 ≡ x(h, t)), and hence there exists a potential � such that

ũ1 − t�4 − �3 − u�2 = �h, �1 − p�2 = −�t.

�1 = p�2 − �t, �3 = ũ1 − t�4 − u�2 − �h.
(6.15)

Using (6.12)–(6.13) and (6.15) in (6.9), we obtain the wave equation

�tt − γp

q
�hh + (γ + 1)p = 0, (6.16)

for �. From (2.21)

wtt + p = 0, whh = xh = q, wtt − γp

q
whh = −(γ + 1)p, (6.17)

and hence we identify � = w(h, t). Using (6.1) we obtain

�t = wt = ũ3, �h = wh = ũ1.

�1 = p�2 − ũ3, �3 = −t�4 − u�2.
(6.18)

Substituting formulas (6.18) for �1 and �3 in (6.12)–(6.13) gives formulas (6.7) for the
Lagrange multipliers {μj , λj } (1 � j � 4). This completes the proof. �

Comment 1
Although not obvious from the proof of theorem 6.1, the theorem implicitly assumes

that not only are the constraint equations Ei = 0 and Fi = 0 satisfied but also the
differential consequences of these equations are also satisfied (e.g. Dt(Ei) = Dt(Fi) = 0
and Dh(Ei) = Dh(Fi) = 0). This can be verified a posteriori, by using the solutions (6.7)
for the Lagrangian constraint functions for the simple case for which �2 = μ2h − λ2t and
�4 = μ4h − λ4t , where (μ2, λ2) and (μ4, λ4) are constant vectors and re-evaluating the
variational derivatives for δA/δu and δA/δq in (6.8) and (6.9).
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6.1. Applications

As a first application of theorem 6.1, consider the simplest case in which �2 = �4 = 0. In
this case,

μ1 = −u, λ1 = −p, μj = λj = 0, j = 2, 3, 4. (6.19)

The constrained Lagrangian density L′ in (6.3) reduces to

L′ = 1

2
u2 − pq

γ − 1
+ p(ũ1

h − q) + u(ũ1
t − u), (6.20)

where p (q, h) is given by (6.4). The variational equations δA/δũ1 = 0, δA/δq = 0 and
δA/δu = 0 reduce to

δA
δũ1

= −(ut + ph) = 0, (6.21)

δA
δq

= −γp

q

(
ũ1

h − q
) = 0, (6.22)

δA
δu

= ũ1
t − u = 0. (6.23)

For this form of the variational principle, we recover the original system of partial differential
equations by requiring ũ1 to have continuous second partial derivatives (note that we have
replaced the entropy-related evolution equation for pt in (5.17) by the equation of state (6.6)).
Clearly, we require non-zero �2 and �4 to recover the complete Sjöberg and Mahomed (2004)
cover system. Equations (6.21)–(6.23) can also be cast in Hamiltonian form by using a
Legendre transformation.

One can show that the Galilean boost symmetry

X̃4 = ∂

∂u
+ t

∂

∂ũ1
+ ũ3 ∂

∂ũ2
+ h

∂

∂ũ3
(6.24)

is a divergence symmetry of the action. The corresponding conservation law is the center of
mass conservation law, which is associated with the potential ũ4.
Noether’s theorem and conservation laws

If the extended symmetry operator X̃ is a divergence symmetry of the action (6.2) then
Noether’s theorem implies the existence of a conservation law, with conserved vector (I0, I1)

of the form

I0 = Wt + V tL′ + �t, I1 = Wh + V hL′ + �h, (6.25)

where

Wt = V̂ uα δL′

δuα
t

+ V̂ uα
jt

δL′

δuα
jt

+ . . . ,

Wh = V̂ uα δL′

δuα
h

+ V̂ uα
jh

δL′

δuα
jh

+ . . . ,

(6.26)

δL′

δψ
= ∂L′

∂ψ
− Dj

(
∂L′

∂ψj

)
+ DjDk

(
∂L′

∂ψjk

)
+ . . . (6.27)

(see, e.g., Ibragimov (1994) and Bluman and Kumei (1989)). The condition for X̃ to be a
divergence symmetry of the action may be written in the form:

X̃L′ + (DtV
t + DhV

h)L′ + Dt�
t + Dh�

h = 0, (6.28)

16



J. Phys. A: Math. Theor. 42 (2009) 475205 G M Webb and G P Zank

where �t and �h are functions corresponding to an infinitesimal divergence transformation
of the Lagrangian.

Theorem 6.2. A divergence symmetry X̃ of the constrained action (6.2) satisfying the
divergence symmetry condition (6.28) implies via Noether’s theorem, the conservation law:

DtI0 + DhI1 = 0, (6.29)

where

I0 = uV̂ x + V tL0 + �t, I1 = pV̂ x + V hL0 + �h, (6.30)

V̂ x = V x − (V tDt + V hDh)x(h, t), x(h, t) ≡ ũ1. (6.31)

Here V̂ x is the canonical symmetry generator for x (h, t) taking into account the Lie extension
formulas for the transformation of the potentials {ũj : 1 � j � 4} for the Sjöberg and
Mahomed (2004) cover system (5.17).

Proof. The symmetry operator X̃ is a symmetry of the cover system (5.17) and hence

X̃(Ei) = X̃(Fi) = 0, 1 � i � 4. (6.32)

Using the fact that Ei = Fi = 0 on the solution manifold, and using (6.32) it follows that L′

can be replaced by L0 in (6.28).
For the constrained variational principle (6.2) we find

Wt = V̂ ũk ∂L′

∂ũk
t

= −μkV̂
ũk

, Wh = V̂ ũk ∂L′

∂ũk
h

= −λkV̂
ũk

(6.33)

are the form of the surface vector terms in Noether’s theorem, where the V̂ ũk

are the canonical
Lie symmetry generators for the ũk (1 � k � 4). In (6.33), we use the Einstein summation
convention for repeated indices and 1 � k � 4 in the sums over k. From (6.25) and (6.33),
the conserved vector (I0, I1) has the form

I0 = −μkV̂
ũk

+ V tL0 + �t,

I1 = −λkV̂
ũk

+ V hL0 + �h.
(6.34)

Taking into account the form (6.7) and (6.18) of the Lagrange multipliers in terms of the
potentials {�k}, the conserved vector (I0, I1) in (6.34) may be expressed in the form

I0 = −Dh

(
�kV̂

ũk)
+ �, I1 = Dt

(
�kV̂

ũk)
+ �, (6.35)

where

� = �kDh

(
V̂ ũk)

+ �4V̂
ũ1

+ V tL0 + �t,

� = −�kDt

(
V̂ ũk)

+ V hL0 + �h.
(6.36)

Using formulas (6.18) for �1 and �3 in (6.36), we obtain

� = c2�2 + c4�4 +
[ − ũ3Dh

(
V̂ ũ1)

+ V tL0 + �t
]
,

� = d2�2 + d4�4 +
[
ũ3Dt

(
V̂ ũ1)

+ V hL0 + �h
]
,

(6.37)

where

c2 = pV̂ ũ1
h + V̂ ũ2

h − V̂ ũ3
h , c4 = V̂ ũ1

+ V̂ ũ4
h − t V̂ ũ3

h ,

d2 = −pV̂ ũ1
t − V̂ ũ2

t + uV̂ ũ3
t , d4 = V̂ ũ4

t − t V̂ ũ3
t .

(6.38)
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In the derivation of (6.37)–(6.38), we used the Lie extension formulas: V̂ ũα
j = Dj(V̂

ũα

).
where (x1, x2) = (t, h). Using the cover system (5.17) in (6.38), we find

c2 = c4 = d2 = d4 = 0, (6.39)

(note for example that V̂ pt = t V̂ p for canonical Lie transformations, as the independent
variables do not change). Equations (6.39) arise from the Lie invariance of the cover system
with respect to X̃. It now follows that

� = −Dh

(
ũ3V̂ ũ1)

+ �̂, �̂ = uV̂ ũ1
+ V tL0 + �t,

� = Dt

(
ũ3V̂ ũ1)

+ �̂, �̂ = pV̂ ũ1
+ V hL0 + �h.

(6.40)

Both (�,�) and (�̂, �̂) are conserved vectors. Re-naming (�̂, �̂) = (I0, I1) and noting
ũ1 ≡ x we obtain the conserved vector (6.30). This completes the proof. �

Example. As an application of the above results on Noether’s theorem, consider the symmetry
operator X̃11 in (5.18), which is a symmetry of the cover system (5.17). Evaluating X̃11(L0),

we obtain

X̃11(L0) + (DtV
t + DhV

h)L0 + Dh

[
1
2 (ũ3)2

] = 0, (6.41)

which establishes that X̃11 is a divergence symmetry of the action (see discussion in (6.32) et
seq.), for which

�t = 0, �h = 1
2 (ũ3)2. (6.42)

For the symmetry operator X̃11

V t = 0, V h = −h2, V̂ ũ1 = ũ4 − t ũ3 + hũ1 + h2q. (6.43)

The conserved vector (I0, I1) by theorem 6.2 is

I0 = u(ũ4 − t ũ3 + hũ1 + h2q),

I1 = p(ũ4 − t ũ3 + hũ1 + h2q) − h2

(
1

2
u2 − pq

γ − 1

)
+

1

2
(ũ3)2.

(6.44)

It is straightforward to verify that (I0, I1) satisfies the conservation law (6.29).

Comment
The constrained variational principle (6.2) expresses the Lagrange multipliers in terms of

two arbitrary potentials �2 and �4. However, the potentials �2 and �4 do not appear in the
corresponding Noether theorem 6.2, because of the Lie invariance conditions for the cover
system. Thus, �2 and �4 are analogous to gauge potentials.

Example. Denote the conserved vector T∗
α(X̃β) as the new conserved vector obtained by

applying X̃β to the known conserved vector Tα using formula (5.3). Then by applying the
Galilean boost symmetry X̃4 of (B.1) to the conserved vector T11 = (I0, I1) in (6.44), we
obtain the conserved vector:

T∗
11(X̃4) = (ũ4 − t ũ3 + hũ1 + h2q, hũ3 − uh2) = (ψh,−ψt), (6.45)

where

ψ = h(ũ4 − t ũ3 + hũ1). (6.46)

Comment
The potential ψ can be determined by using the homotopy formula:

ψ =
∫ 1

0

dλ

λ
(h′T

′1 − t ′T
′2)|(t ′,h′)=(λt,λh), (6.47)
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(e.g. Olver (1993), equation (1.69)) and by noting that

t ′
∂

∂t ′
+ h′ ∂

∂h′ = λ
d

dλ
. (6.48)

Example. Applying the scaling symmetry operator X̃(s) to T11 = (I0, I1) gives the new
conserved vector:

T∗
11(X̃(s)) = (3α3 + 2α6 + 3α3)T11. (6.49)

Note that T∗
11(X̃(s)) is trivial, because it is a multiple of the known conserved vector T11. Also

note that

[X̃(s), X̃11] = (α3 + 2α5 + α6)X̃11. (6.50)

The symmetry operator X̃11 is associated with T11 in the sense that T∗
11(X̃11) = 0, and the

the commutator result (6.50) implies T∗
11(X̃(s)) is trivial by theorem 4 of Kara and Mahomed

(2002).

7. Concluding remarks

Scaling symmetries of the one-dimensional ideal gas dynamics equations for a gas with
adiabatic index γ were used to obtain Lagrangian and Eulerian conservation laws. Conditions
for a linear combination of the three scaling symmetries to be a variational or divergence
symmetry of the action were established. In these cases, the conservation laws were derived
using Noether’s theorem. The Eulerian conservation laws can be determined once the
Lagrangian form of the conservation law has been obtained (see proposition (4.2) and Padhye
and Morrison (1996a, 1996b)). The scaling symmetry conservation laws only apply for special
initial entropy distribution for the gas. For the case γ = 3, there is no constraint on the initial
entropy distribution.

In section 5, we used the methods developed by Kara and Mahomed (2002) and Sjöberg
and Mahomed (2004) to derive a nonlocal conservation law (5.23) obtained by applying the
nonlocal symmetry operator X11 of Sjöberg and Mahomed (2004) to the scaling symmetry
conserved vector. The nonlocal symmetry X11 only applies for a specific dependence of
the entropy S(h) on the Lagrangian mass coordinate h (see (5.21) et seq.). The conserved
scaling symmetry vector (4.22) could be used to extend the cover system (5.17) of Sjöberg
and Mahomed (2004) to search for further symmetries of the expanded cover system. The
conservation laws obtained in the present paper presumably could be obtained by other methods
(e.g. the direct method of Anco and Bluman (2002)).

In section 6, we developed a constrained variational principle, incorporating the mass,
energy, momentum and center of mass conservation laws by means of Lagrange multipliers,
which provides a variational formulation of the Sjöberg and Mahomed (2004) cover system
(5.17). The requirements that the action be stationary with respect to the potentials ũk ,
(1 � k � 4) and with respect to u and q delimited the allowed functional forms for the
Lagrange multipliers. Noether’s theorem for the constrained action principle has the same
form as the classical Noether theorem, except that the Lie symmetry operators now incorporate
the effects of the nonlocal potentials. A nonlocal conservation law for the symmetry X11 was
obtained by Noether’s theorem.

In appendix , we show that the conditions for similarity solutions of the nonlinear wave
equation (3.13) (which is equivalent to the Euler equation xtt + ph = 0) to possess a first
integral is different than the condition (4.17) for the equations to possess a conservation law.
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Appendix A

In this appendix we derive (5.3) using differential forms (see e.g. Harrison and Estabrook
(1971) and Kara and Mahomed (2000)). Conservation laws of the form (5.2) are associated
with the vanishing of the exterior derivative of the n − 1 form:

� = T � ω, ω = dx1 ∧ dx2 . . . ∧ dxn, (A.1)

where T = T iDi is a contravariant vector field and ω is an n-form. Taking the exterior
derivative of (A.1) gives

d� = ∇·T ω. (A.2)

The n − 1 form � is closed if d� = 0, which in turn implies the conservation law ∇·T = 0.
To derive (5.3), consider the condition for the (n − 1) form � to be invariant under the Lie
symmetry operator X meaning that the Lie derivative of � with respect to vector field X is
zero, i.e. LX(�) = 0. Noting that

LX(�) = LX(T � ω) = LX(T )� ω + T �LX(ω)

= [X, T ]� ω + T ∇·ξ� ω

= [
X(T i) − T jDj (ξ

i) + T i∇·ξ]
Di� ω = T ∗� ω, (A.3)

we identify the vector field T ∗ = T ∗iDi in (A.3) where

T ∗i = [X(T i) − T jDj (ξ
i) + T i∇·ξ ], (A.4)

which is formula (5.3) for T ∗i . From (A.3) we find that LX(�) = 0 if T ∗i = 0, in which case
we identify the symmetry X with the conservation law ∇·T = 0. More generally, LX(�) �= 0.
Next using the formula LX(d�) = d(LX�) and using (A.2) for d�, we obtain

LX[∇·T ω] = d(T ∗�ω) = d�∗ = (DiT
∗i )ω. (A.5)

From (A.5), it follows that if T is a conserved vector, so is T ∗ a conserved vector. This proves
the result alluded to in (5.3) et seq.

Appendix B

In this appendix, we list the Lie extension formulas for the symmetry operators {Xi : 1 � i �
6, i = 11}. Using the result (5.5) derived by Sjöberg and Mahomed (2004), we obtain

X̃1 = ∂

∂t
+ ũ3 ∂

∂ũ4
,

X̃2 = ∂

∂ũ1
− h

∂

∂ũ4
,

X̃3 = t
∂

∂t
+ h

∂

∂h
+ ũ1 ∂

∂ũ1
+ ũ2 ∂

∂ũ2
+ ũ3 ∂

∂ũ3
+ 2ũ4 ∂

∂ũ4
,
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X̃4 = ∂

∂u
+ t

∂

∂ũ1
+ ũ3 ∂

∂ũ2
+ h

∂

∂ũ3
,

X̃5 = t
∂

∂t
+ 2h

∂

∂h
− u

∂

∂u
− 2q

∂

∂q
+ ũ3 ∂

∂ũ3
+ 2ũ4 ∂

∂ũ4
,

X̃6 = h
∂

∂h
+ p

∂

∂p
− q

∂

∂q
+ ũ2 ∂

∂ũ2
+ ũ3 ∂

∂ũ3
+ ũ4 ∂

∂ũ4
,

X̃11 = −h2 ∂

∂h
− hp

∂

∂p
+ (hu − ũ3)

∂

∂u
+ 3hq

∂

∂q

+ (ũ4 − ũ3t + ũ1h)
∂

∂ũ1
− 1

2
(ũ3)2 ∂

∂ũ2
− ũ3h

∂

∂ũ3
− ũ4h

∂

∂ũ4
. (B.1)

The symmetry operator

X̃(s) = α3X̃3 + α5X̃5 + α6X̃6 (B.2)

can be written down using (B.1). The symmetry operators {Xi : 1 � i � 6} were obtained
by transforming the Eulerian symmetry operators (2.5)–(2.7) using the Lagrangian map (see
section 3 and Webb and Zank (2007)). For the conservation law cases α5 + α6 + 2α3 = 0 and
the equation of state depends on the parameters {α3, α5, α6}.

The non-zero commutators in (B.1) are

[X̃3, X̃11] = X̃11, [X̃5, X̃11] = 2X̃11, [X̃6, X̃11] = X̃11,

[X̃1, X̃3] = X̃1, [X̃1, X̃4] = X̃2, [X̃1, X̃5] = X̃1,

[X̃2, X̃3] = X̃2, [X̃4, X̃5] = −X̃4.

(B.3)

The formula

[X̃(s), X̃11] = (α3 + 2α5 + α6)X̃11 (B.4)

gives the commutator for X̃(s) and X̃11. The operators used by Sjöberg and Mahomed (2004)
denoted by {X̃S

i } are given by

X̃S
1 = X̃1, X̃S

2 = X̃3, X̃S
3 = X̃2, X̃S

4 = X̃4,

X̃S
5 = X̃7 ≡ ∂

∂h
, X̃S

6 = 2X̃3 − X̃5, X̃S
7 = X̃6.

(B.5)

We have not included the fluid relabeling symmetry X7 = ∂h in (B.1), which applies if the
entropy of the gas S = const. If S = const., one must add the symmetries {∂ũj : j = 2, 3, 4}
to the list of symmetry generators. It is straightforward to determine the commutators in this
case also. A larger symmetry algebra occurs for the cases γ = 3 and γ = −1 (e.g. Sjöberg
and Mahomed (2004)). Note that the symmetry algebra depends on the equation of state.

Appendix C

Consider the classical similarity solutions of the nonlinear wave equation (3.13) for the scaling
symmetries. This equation is the Lagrangian momentum equation xtt + ph = 0. We show that
condition (4.14) for the equation to possess a conservation law is not the same as the condition
for the similarity reduced ordinary differential equation to possess a first integral.

The general similarity solution of (3.13) is obtained by integrating the group
characteristics:

dt

V t
= dh

V h
= dx

V x
, (C.1)
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where V t, V h and V x are the group generators (3.6) (e.g. Bluman and Kumei (1989)).
Integration of the equation dh/dt = V h/V t gives the similarity variable

η = (h + d1)t
−ν2 , ν2 = δ2

α
, (C.2)

where η is constant on the characteristics. Similarly, integrating the equation dx/dt = V x/V t

it follows that the similarity solution has the form

x(h, t) = tν3F(η), ν3 = α3

α
, (C.3)

where F(η) is an arbitrary function of η, which is chosen so that x (h, t) satisfies (3.13).
Substitution of the solution ansatz (C.2)–(C.3) for x (h, t) into the nonlinear wave equation

(3.13) results in the ordinary differential equation:

ν2
2η2F ′′ + ν2(ν2 + 1 − 2ν3)ηF ′ − N1η

−2ν−2(F ′)−γ−1(γ η2F ′′ + 2νηF ′) = 0, (C.4)

for F(η), where F ′ = dF/dη and F ′′ = d2F/dη2. Equation (C.4) can also be written in the
more suggestive form:

d

dη

(
ν2

2η2 dF

dη
+ ηF [ν2

3 − ν3 + (ν2 + ν3)(ν2 + ν3 − 1)] + N1η
−2ν

[
dF

dη

]−γ
)

+ (ν2 + ν3)(ν2 + ν3 − 1)F = 0. (C.5)

Thus, if

(ν2 + ν3)(ν2 + ν3 − 1) = 0, (C.6)

equation (C.4) possesses the first integral:

ν2
2η2 dF

dη
+ ηF(ν2

3 − ν3) + N1η
−2ν

[
dF

dη

]−γ

= const. (C.7)

Since

ν2 + ν3 = 2α3 + 2α5 + α6

α
, ν2 + ν3 − 1 = α3 + α5 + α6

α
, (C.8)

it is clear that the conditions (C.6) are not equivalent to the condition (4.14): α5 +α6 + 2α3 = 0
for a conservation law.
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